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Overview

@ First order syntax: modelled by algebras on Ser

@ First order syntax with bindings: modelled by subst-algebras
(binding-algebras) on Ser”

@ First order syntax with equations: modelled by algebraic theories
(lawvere theories, or variety of algebras).

@ First oder syntax with bindings and equations: equational
theories by Kelly and Power (problematic).

@ New equational theories.



@ Abstract Syntax with Binding
@ First order syntax without binding



Definition and Example
Signature for First Order Syntax

S =(0,a)

O is a set of operators

a is an arity function from O to N
Terms built from Signature

Termy = V V is a set of variables
| f(Terml,. .. Term?) f€0,a(f)=n

Example: Group

O = {e,i,m}
ale) =0,a(i) = 1,a(m) =2
V={xyz...}

Termy = {xaevm(xam(ya Z))vm(evm(i(x)vy))v 20 }




Categorical Construction

@ Base Category: Ser of sets and functions.
@ Endofunctor: ©X = HX“(f)

feo
@ Example: Group XX = 1 + X + X?

State Set Depth Group
So 0 0
S V 4+ XSy 0 X, VY, 2y ..,€
S, V+ 38 <1 x,e,i(e),i(x),m(e,x),. ..
Sz V+3ES | <2 | xeilx),mle,x),m(x,i(e)),...
Soo Termy <00 | ...,m(i(i(x)),m(x,i(e))),...

=[x, 7x]

@ Free Monad of ¥: TX = uA.X + YA with X + XTX ——=TX



Algebras

@ objects: (X,s: XX — X) where X, s in Set
@ morphisms: 1 : (X,s) — (Y,t) where f : X — Y in Set satisfying

Xf
XX —=3%YY

S\L i/t

X—7Y

Example: Group

le,i,m]

@ objects: (X, 1 +X+X> ——=X)

@ morphisms: f: (X,e,i,m) — (Y,¢',i’,m') wheref: X — Y

2

1L> X*f>y X2L>Y2
N
XT) XT>Y X——Y

A\




Free Algebras

Free Algebras and Free monads

(1x,27X X 1%) X-alg  (X,s)

X Set X

Free monad T = uF

Universal property

= (i,r)# Spx
YIX ——=3YY YTITX —XTX

TX\L lr TTX\L \LTX
(i’r)# 1206

X ——=Y X ——>1X

X




@ Abstract Syntax with Binding

@ First order syntax with binding



Definition and Example

Signature for First Order Syntax with Binding

S =(0,a)
O is a set of operators
a is an arity function from O to N*, i.e.a(f) = (a1, . . ., a)

Terms built from Signature

Term({xi,...,x,}) == {x1,...,%}
| fntty - oy X, - Term({x1, . . o Xnta, }),
Xntls oo s Xt -Term({xy, .. Xuta }))

where f € O,a(f) = (a1, . .., a)

Example: Untyped )\-Calculus

O = {lam, app}

allam) = (1), a(app) = (0,0)

Term(xy,x2) = {x1,app(x1,x2), lam(x3.app(x1, app(x2,x3))) . . .}

Term({x1, ..., x,}) 2 {[t]a | FV(¢) C {x1,...,x,} in untyped A-calculus}




Category of Presheaves

Definitions

F objects finite cardinals, i.e.0, {x; }, {x1,x2}, . ..
let n be {xi,...,x,}
morphisms  set functions from n to m
Set®  objects functors from IF to Set
morphisms  natural transformations between functors

Interpretations

X € Set™: alanguage.
X(n): set of terms in context {xi,...,x,}, i.e{t]| xi,...,x, ¢t}

X(n) Xe) X(m): x1,.., %0t = Xy, X tXp0) /X0 X /X

Presheaf of variables and Type constructor for context extension

V€ Setf’: V(n) = {x1,...,%.}, V(p) = p
§: Set™ — Sef™: (6X)(n) = X(n+ 1), (6X)(p) = X(p+ 1)




Categorical Construction

@ Base Category: Ser”
@ Endofunctor: £(x) &' 11

feo

IT s“x

1<i<k

a(f)=(ai)1<i<k
@ Example: \-calculus ¥X = 6X + X?

State Set Q) {x1 } {x1 s Xz}

So 0 0 0 0

S V+ XS 1] X1 X1,X2

Sy | V+ XS Axp.x1 X1, X1X1, X1, X2, X1X2,

/\Xz.xl ) )\XQ.)CQ /\X3 X3y e
S3 V+ES2 ()\.X] .xl)(/\xl.xl), xl,(X]X])(AXQ.Xz), XZ,(X]XQ)()\X3.X3),
)\)C].)\)Cz.xl,... )\X2.)\X3.X3,... )\)C3.>\)C4.X3,...

Seo Term Term(0) Term({x;}) Term({x1,x2})

@ Free Monad of 3: TX = uA.X + XA with X + ¥7X

=[x, 7x]

X




Algebras

lam,q,
@ objects: (X, 56X + X? [JQX)

@ morphisms: f : (X, lam,app) — (Y, lam’,app’) wheref : X — Y

2

0X i) Y X2 ; Y2
Zam¢ J/ lam’ app l’ J/ app’
X *f> Y X——Y

Universality

8(i,lam,app)* + (i, lam,app) #*

STV + TV? §Y +v?
TVi l[lumvapp]
- (ilam,app)* Y
WVT :
Vv




@ Abstract Syntax with Binding

@ Substitution Algebras



Motivations for substitution as an algebraic

operation

@ We can express operations involving substitution, e.g.s3
equations in A-calculus.

@ It ensures semantics substitution lemma, i.e.compositionality of
substitution.

@ It automatically verifies some structural rules related to
substitution, e.g.syntactic substitution lemma and admissibility of
cut.



Substitutions on concrete terms

Okt (X1, oo X 8)s (e X o, )
— X1y X Bt /X1, /X

Example: A-calculus

orn(tlxr, . xyun, . u) =
u; iftZXi
| (orn(tiyur, . ou))(orn(t;ur, ... ui)) if t =111,

| )\xn+1.ak+17n+1(t1[x1,...,xk+1];u1,...,uk,xn+1) ift:Mk+1.t1[x1,...7xk+l



Categorical Construction

@ Substitution: Function from Substitutable Pairs to Term
@ Substitutable Pair: (xy,...,xc F1); (1, ... x Fougy .o wg)

Type Constructor for Substitutable Pairs
X o V)({rr, o }) B [ X, od) x (W, om)))/ =

keN
= {(t; ﬁ)|k eN;re X({X], ooo ,xk})a i€ (Y({xla 0oo 7xn}))k}/ =

where = is the equivalence relation generated by ~

(Gury . ooyum) ~ (Csuy, ) i Jaw X(r)(0) =7 Aw =)

The tensor e : Sef® x Ser® — SerF forms a closed monoidal structure
with a unit V and suitable natural transformations «, A, p.




Categorical Construction

@ sty .v—y: XX eY — X(X oY) is a natural transformation between
two functors of type Ser™ x V|Set” — Ser".

@ Example: A-calculus: sty e.y—y : (X +X x X) @Y =
(0X)oY +(XxX)eY —46(XeY)+(XoY)x (XeY)
@ 0: X eX — X is defined in the following way.

StV ny:V—TV Yo

STV 0 TV ———— B(TV ¢ TV) ———— 3TV

TV e TV TV

ny eid
T Aty

VeTlV




Initial Algebra Semantics

Category of S-subst-algebras

@ Objects: (X,e:V — X, h: XX — X,sub: X ¢ X — X) where
(X, e, sub) is @a monoid in Set™ and (X, k) is an Y-algebra such that
the following diagram commutes.

SIX e:V—X 3 (sub)

YXeX — > N(XeX) ———=¥X

hoidl lh
sub

XeX X

@ Morphisms: maps of Ser which are both ¥-algebra and monoid
homomorphisms.

@ Initial Object: (TV,ny : V - TV,7:XTV - TV,c : TV e TV — TV)




Abstract Theory
Definition (Category of X-subst-algebras)

@ Monoidal closed category C = (C,®,1)

@ Strong endofunctor X with a strength? st

@ Objects: X = (X, e, h, sub), where (X, e, sub) is a monoid in C and
(X, h) is a X-algebra such that the following diagram commutes.

sty x 3 (sub)
SXeX——— > Y(XeX) — = %X
hoidl lh
sub
XeX X

@ Morphisms: maps of C which are both X-algebra and monoid
homomorphisms.

@A strength for X is a natural transformation of type (X)) ® Y — (X ® Y) satisfying
some coherence conditions.




Abstract Theory

Theorem

If ¥ has a free monad T then (71,7, 0, 7) is an initial X-subst-algebra,
where 7 : ¥TI — TI is the free X-algebra of I and ¢ is given as follows:

77‘[

o TIeTl — "~ el al

T(I e TI) TTI e

where st : TX o Y — T(X o Y) is the lifting of the strength sz of X to its
free monad 7.




Abstract Theory

Definition (Category of X-ptd-subst-algebras)

@ Monoidal closed category C = (C,®,1)

@ u-strong endofunctor ¥ with a u-strength? st for the forgetful
functor u from 1|C

@ Objects: X = (X, e, h, sub), where (X, e, sub) is a monoid in C and
(X, h) is a X-algebra such that the following diagram commutes.

SIX e:1—X 3 (sub)

SXeX ——>N(XeX) ——= %X

hoidl lh
sub

XeX X

@ Morphisms: maps of C which are both X-algebra and monoid
homomorphisms.

aA u-strength for X is a natural transformation of type X(X) ® u¥Y — (X ® uY)
satisfying some coherence conditions.




Abstract Theory

(TL,n;, 0, py) is an initial -ptd-subst-algebra, where o is given by the
following composite:

S,

TIQTI =TI @u(n : I — TI) — =TI Qu(y)) = T(I ® TI)

TAn 1

TTI TI .




9 Equational Theories
@ Classical approach



Motivation for equations

Given a group algebra (X, e, i,m),
@ (G1)Vx,y,z€X m(m(x,y),z) = m(x,m(y,z))
@ (G2)VxeX mlex)=x
@ (G3)VxeX m(i(x),x)=e

0, n equations for \-calculus

| A

Given a A-calculus algebra (X, e, lam, app, sub),
@ (5-eqn)
Vit e dX(n),u € X(n) app(lam(xyii.t),u) = sub(t; (x1,...,%,,u))

® (1-eqn)
Vit e X(n) lam(x,q1.app(t,X,41)) =t




Kelly & Power equational theories

KP Theory Groups

Sig S |Cp| = C Sig S : N — Ser

(0,1,2) — (1,1,1)

EX = [laeic, C(a:X) @ S(a) | BX = J[,enX* x Sla) = 1+ X + X2

X = pA.X 4+ XA X = pA.X + XA
TX = all terms freely gener- | TX = all group terms freely generated
ated from X from a variable set X
(Equation) (Equation)
D : |Cip| — C together with D:N—Set:(1,3)— (2,1)
Ep(a Er(1
Vac (Col Da) =2 T(a) | D) =2 == 7(1)
Eg(a) Eg(1)
EL(1)(1) = m(e,x1), Er(1)(1) = x;
EL(1)(2) = m(i(x1),x1), Er(1)(2) = e
D) = 1 2L 7(3)
Er(3)
EL(3)(1) = m(m(x1, x2), x3),
Er(3)(1) = m(x1,m(x2,x3))




Free Constructions

KP Theory

Groups

There exists a finitary monad 7’
such that

T'-Alg = ¥-alg/k,~k,
)
F u

C

where ¥-alg/g, g, is a full sub-
category of X-alg whose ob-
jects are X-algebras satisfying
the equations.

There exists a finitary monad 7’
such that

T'-Alg = ¥-alg/k,~,
(i
F{ A ju
\

/

Set

where X-alg/g—g, is a full
subcategory of X-alg whose
objects are group-algebras,
ie.(X,e,i,m) satisfying the
group axioms G1, G2, and G3




Problems with applying K.P. theory to

subst-algebras

Recall: subst-algebras for \-calculus

Objects: (X,e: V — X,lam: 6X — X,app : X* — X, sub : X ¢ X — X)
satisfying

eeid Qx,x,x

VeX Y YoX XoV- Xox (XeX)oX——""5 Xe(XoX

X lsub X \Lsub suboidl \Lidosu
X X XeX XeX
X

Ssub~+sub®

SIX,e:V—X

(06X +X?) o X S(X e X)+ (X eX)? 6X + X2

[tam,app) oidi l [lam,app]

XeX sub X




9 Equational Theories

@ New view on equations



A new view on equational theories: Observation

Example: Group

le,i,m]

Given a group algebra (X,1+X + X>? ————X) ,

@ (G1)Vx,y,ze X m(m(x,y),z) = m(x,m(y,z))
@ (G2)VxeX m(e,x)=x
@ (G3)VxeX m(i(x),x)=e

XxXxX " xxx x5y« x
MXml im !l lm
XxX—" % 1 ———=X
G1 G3

(1,id) exid




A new view on equational theories

>-alg D-alg
1+X+X? X+X+X
—
[eaivm]l ELi iER
X X

Definition (Equations for algebras)

@ a category C and an endofunctor X

@ Equation: a domain endofunctor D with functors E; and Ei from
>-alg to D-alg preserving base-objects of algebras, i.e.W’'E;, = u

and wW'Eg = u.
EL
Y-alg /2 D-alg
Eg
u
ul
C




Free constructions

Theorem
If either

@ (Cond1) C is cocomplete and ¥, D preserve colimits of w-chains.

@ (Cond2) C is cocomplete and well-copowered, and ¥ preserves
epimorphisms.

then

L E,
Y-Alg/p=kc L _X-Alg——Z D-Alg
K

E
u
u'' =uk u

C




Free constructions

Theorem
If either

@ (Cond1) C has coequalizers, pushouts and colimits of chains
whose cardinals are less than or equal to a regular cardinal A,
and X, D preserve colimits of chains whose cardinals are equal
to A.

@ (Cond2) C has coequalizers, pushouts and colimits of chains
(whose cardinals are less than a regular cardinal \) and is

(\-)well-copowered, and X preserves epimorphisms.
then

L E,
Y-Alg/p=kc L _X-Alg——Z D-Alg
K

E
u
u'' =uk u

C




Sketch of the Proof



Sketch of the Proof



Sketch of the Proof



Sketch of the Proof

DX,



Sketch of the Proof

DX,



Sketch of the Proof




Sketch of the Proof

DX,



Sketch of the Proof

DX,



Sketch of the Proof

DX,



Sketch of the Proof

DX,



Sketch of the Proof



Sketch of the Proof

X, —=X

0 1
Erhy Egrhy

DX() —_— DX1



Sketch of the Proof




Sketch of the Proof

¥X, vX, )2). G vX,
SRk F
X, X, X, e X




9 Equational Theories

@ Examples of equations



Examples of Equations

Objects: (X,e: V — X,lam : 6X — X, app : X* — X, sub: X ¢ X — X)
satisfying

ax,x,x

VeX " XeX XoV—-"%xXex (XoX)oX " Xeo(XoX

X\ \Lsub X\ \Lsub Sub.,'dl lidosub
X X XeoX XeoX
X

SIX e:V—X Ssub—+sub®

(60X +X?) e X S(XeX)+ (XeX)? §X + X2

[lam ,app] Oidl l [lam,app]

XeX sub X




Examples of Equations

(6-ean)
Vte dX(n),u € X(n) app(lam(xyi.t),u) = sub(t; (x1, ..., %, u))

lamxid

X XX——>XxX

emb \L \L app
sub

XeoX X

(n-eqn)
Vte X(n) lam(x,q1.app(t,Xu41)) =t

) DX 5X x X = 5(X x X) L 5x

X x 1
\ l lam
id
X




Examples of Equations

m-calculus

@ Base category Set!
@ v: X — X, where 6X & (V — X)

@ vx.vy.t = Vy.vx.t

@ V1€ 8X(n)  UXyy1.VXniot = UXnyy1.VXns2t[ X2/ Xna1, Xni1/Xnia]

56X — > 56X
6V\L léu
5X 5X




@ Modelling DILL (Dual Intuitionistic Linear Logic)
@ Modelling Dependent type languages.

@ Develop the equational theories in pre-ordered setting, and apply
them to Term Rewriting Systems.

@ Find more applications of the equational theories. Example: the
free-algebra models for the w-calculus by lan Stark.
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