Algebraic theories in the presence of binding operators, substitution, etc.

Chung Kil Hur Joint work with Marcelo Fiore

Computer Laboratory University of Cambridge

20th March 2006

Overview

- First order syntax: modelled by algebras on Set
- First order syntax with bindings: modelled by subst-algebras (binding-algebras) on $Set^{\mathbb{F}}$
- First order syntax with equations: modelled by algebraic theories (lawvere theories, or variety of algebras).
- First oder syntax with bindings and equations: equational theories by Kelly and Power (problematic).
- New equational theories.

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

Definition and Example

Signature for First Order Syntax

$$\mathcal{S} = (O, a)$$
 O is a set of operators
 a is an arity function from O to \mathbb{N}

Terms built from Signature

$$egin{array}{lll} \emph{Term}_V &:= V & \emph{V} ext{ is a set of variables} \ &| f(\emph{Term}_V^1, \ldots, \emph{Term}_V^n) & f \in O, a(f) = n \end{array}$$

Example: Group

$$O = \{e, i, m\}$$

$$a(e) = 0, a(i) = 1, a(m) = 2$$

$$V = \{x, y, z, ...\}$$

$$Term_V = \{x, e, m(x, m(y, z)), m(e, m(i(x), y)), ...\}$$

Categorical Construction

Base Category: Set of sets and functions.

• Endofunctor: $\Sigma X = \coprod_{f \in O} X^{a(f)}$

• Example: Group $\Sigma X = 1 + X + X^2$

State	Set	Depth	Group
S_0	Ø		Ø
S_1	$V + \Sigma S_0$	0	x, y, z, \ldots, e
S_2	$V + \Sigma S_1$	≤ 1	$x, e, i(e), i(x), m(e, x), \dots$
S_3	$V + \Sigma S_2$	≤ 2	$x, e, i(x), m(e, x), m(x, i(e)), \dots$
:	:	:	<u>:</u>
S_{∞}	$Term_V$	$< \infty$	$\ldots, m(i(i(x)), m(x, i(e))), \ldots$

• Free Monad of Σ : $TX = \mu A.X + \Sigma A$ with $X + \Sigma TX \xrightarrow{\cong [\eta_X, \tau_X]} TX$

Algebras

Definition of Σ -alg

- objects: $(X, s : \Sigma X \to X)$ where X, s in Set
- morphisms: $f:(X,s) \to (Y,t)$ where $f:X \to Y$ in Set satisfying

$$\begin{array}{ccc} \Sigma X & \xrightarrow{\Sigma f} & \Sigma Y \\ s \downarrow & & \downarrow^t \\ X & \xrightarrow{f} & Y \end{array}$$

Example: Group

- objects: $(X, 1 + X + X^2 \xrightarrow{[e,i,m]} X)$
- ullet morphisms: $f:(X,e,i,m) \rightarrow (Y,e',i',m')$ where $f:X \rightarrow Y$

Free Algebras

Free Algebras and Free monads

$$(TX, \Sigma TX \xrightarrow{\tau_X} TX) \qquad \Sigma\text{-alg} \qquad (X, s)$$

$$\downarrow f \qquad \qquad \downarrow u \qquad \qquad \downarrow u$$

$$X \qquad \qquad Set \qquad X$$

Free monad T = uF

Universal property

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

Definition and Example

Signature for First Order Syntax with Binding

```
\mathcal{S}=(O,a) O is a set of operators a is an arity function from O to \mathbb{N}^*, i.e.a(f)=(a_1,\ldots,a_k)
```

Terms built from Signature

```
\begin{array}{lll} \textit{Term}(\{x_1, \dots, x_n\}) & := & \{x_1, \dots, x_n\} \\ & | & f(x_{n+1}, \dots, x_{n+a_1}.\textit{Term}(\{x_1, \dots, x_{n+a_1}\}), \\ & & \vdots \\ & & x_{n+1}, \dots, x_{n+a_k}.\textit{Term}(\{x_1, \dots, x_{n+a_k}\})) \\ & & \text{where } f \in O, a(f) = (a_1, \dots, a_k) \end{array}
```

Example: Untyped λ -Calculus

```
\begin{split} O &= \{lam, app\} \\ a(lam) &= (1), a(app) = (0,0) \\ \textit{Term}(x_1, x_2) &= \{x_1, app(x_1, x_2), lam(x_3.app(x_1, app(x_2, x_3))) \ldots\} \\ \textit{Term}(\{x_1, \dots, x_n\}) &\cong \{[t]_\alpha \mid FV(t) \subseteq \{x_1, \dots, x_n\} \text{ in untyped } \lambda\text{-calculus}\} \end{split}
```

Category of Presheaves

Definitions

\mathbb{F}	objects	finite cardinals, <i>i.e.</i> \emptyset , $\{x_1\}$, $\{x_1, x_2\}$,
		$let n be \{x_1, \ldots, x_n\}$
	morphisms	set functions from n to m
$Set^{\mathbb{F}}$	objects	functors from \mathbb{F} to Set
	morphisms	natural transformations between functors

Interpretations

 $X \in Set^{\mathbb{F}}$: a language.

X(n): set of terms in context $\{x_1,\ldots,x_n\}$, *i.e.* $\{t\mid x_1,\ldots,x_n\vdash t\}$

 $X(n) \xrightarrow{X(\rho)} X(m) : x_1, \dots, x_n \vdash t \mapsto x_1, \dots, x_m \vdash t[x_{\rho(1)}/x_1, \dots, x_{\rho(n)}/x_n]$

Presheaf of variables and Type constructor for context extension

$$V \in Set^{\mathbb{F}}$$
: $V(n) = \{x_1, \dots, x_n\}$, $V(\rho) = \rho$
 $\delta : Set^{\mathbb{F}} \to Set^{\mathbb{F}}$: $(\delta X)(n) = X(n+1)$, $(\delta X)(\rho) = X(\rho+1)$

Categorical Construction

■ Base Category: Set^F

• Endofunctor:
$$\Sigma(X) \stackrel{\mathsf{def}}{=} \coprod_{\substack{f \in O \\ a(f) = (a_i)_{1 \leq i \leq k}}} \prod_{1 \leq i \leq k} \delta^{a_i} X$$

• Example: λ -calculus $\Sigma X = \delta X + X^2$

State	Set	Ø	$\{x_1\}$	$\{x_1, x_2\}$
S_0	Ø	Ø	Ø	Ø
S_1	$V + \Sigma S_0$	Ø	x_1	x_1, x_2
S_2	$V + \Sigma S_1$	$\lambda x_1.x_1$	$x_1, x_1x_1,$	$x_1, x_2, x_1x_2,$
			$\lambda x_2.x_1, \lambda x_2.x_2$	$\lambda x_3.x_3,\ldots$
S_3	$V + \Sigma S_2$	$(\lambda x_1.x_1)(\lambda x_1.x_1),$	$x_1,(x_1x_1)(\lambda x_2.x_2),$	$x_2,(x_1x_2)(\lambda x_3.x_3),$
		$\lambda x_1.\lambda x_2.x_1,\ldots$	$\lambda x_2.\lambda x_3.x_3,\ldots$	$\lambda x_3.\lambda x_4.x_3,\ldots$
:	:	:	:	:
S_{∞}	Term	$Term(\emptyset)$	$Term(\{x_1\})$	$Term(\{x_1,x_2\})$

• Free Monad of Σ : $TX = \mu A.X + \Sigma A$ with $X + \Sigma TX \xrightarrow{\cong [\eta_X, \tau_X]} TX$

Algebras

Example: λ -calculus

- objects: $(X, \delta X + X^2 \xrightarrow{[lam, app]} X)$
- morphisms: $f:(X,lam,app) \rightarrow (Y,lam',app')$ where $f:X \rightarrow Y$

Universality

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

Motivations for substitution as an algebraic operation

- We can express operations involving substitution, $e.g.\beta$ equations in λ -calculus.
- It ensures semantics substitution lemma, i.e.compositionality of substitution.
- It automatically verifies some structural rules related to substitution, e.g.syntactic substitution lemma and admissibility of cut.

Substitutions on concrete terms

$$\sigma_{k,n}: (x_1,\ldots,x_k \vdash t); (x_1,\ldots,x_n \vdash u_1,\ldots,u_k)$$

$$\longmapsto x_1,\ldots,x_n \vdash t[u_1/x_1,\ldots,u_k/x_k]$$

Example: λ -calculus

```
\frac{\sigma_{k,n}(t[x_1,\ldots,x_k];u_1,\ldots,u_k)}{\sigma_{k,n}(t_1;u_1,\ldots,u_k)} = 

| (\sigma_{k,n}(t_1;u_1,\ldots,u_k))(\sigma_{k,n}(t_2;u_1,\ldots,u_k)) 

| (\sigma_{k,n}(t_1;u_1,\ldots,u_k))(\sigma_{k,n}(t_2;u_1,\ldots,u_k)) 

| (t = x_i) 

| (t = x_i) 

| (t = t_1t_2) 

| (t = t_1t
```

Categorical Construction

- Substitution: Function from Substitutable Pairs to Term
- Substitutable Pair: $(x_1, \ldots, x_k \vdash t)$; $(x_1, \ldots, x_n \vdash u_1, \ldots, u_k)$

Type Constructor for Substitutable Pairs

$$\begin{split} (X \bullet Y)(\{x_1,\ldots,x_n\}) &\stackrel{\text{def}}{=} \coprod_{k \in \mathbb{N}} X(\{x_1,\ldots,x_k\}) \times (Y(\{x_1,\ldots,x_n\}))^k / \approx \\ &= \{(t;\vec{u})|k \in \mathbb{N}, t \in X(\{x_1,\ldots,x_k\}), \vec{u} \in (Y(\{x_1,\ldots,x_n\}))^k \} / \approx \\ \text{where } \approx \text{ is the equivalence relation generated by } \sim \\ (t;u_1,\ldots,u_k) \sim (t';u_1',\ldots,u_{k'}') \quad \text{iff} \quad \exists_{r:k \to k'} X(r)(t) = t' \wedge u_i = u_{r(i)}' \end{split}$$

The tensor $\bullet: Set^{\mathbb{F}} \times Set^{\mathbb{F}} \to Set^{\mathbb{F}}$ forms a closed monoidal structure with a unit V and suitable natural transformations α, λ, ρ .

Categorical Construction

- $st_{X,e:V \to Y} : \Sigma X \bullet Y \to \Sigma (X \bullet Y)$ is a natural transformation between two functors of type $Set^{\mathbb{F}} \times V \downarrow Set^{\mathbb{F}} \to Set^{\mathbb{F}}$.
- Example: λ -calculus: $st_{X,e:V\to Y}: (\delta X + X \times X) \bullet Y \cong (\delta X) \bullet Y + (X \times X) \bullet Y \to \delta (X \bullet Y) + (X \bullet Y) \times (X \bullet Y)$
- $\sigma: X \bullet X \to X$ is defined in the following way.

Initial Algebra Semantics

Category of S-subst-algebras

• Objects: $(X,e:V\to X,h:\Sigma X\to X,sub:X\bullet X\to X)$ where (X,e,sub) is a monoid in $Set^{\mathbb{F}}$ and (X,h) is an Σ -algebra such that the following diagram commutes.

$$\begin{array}{c|c} \sum X \bullet X & \xrightarrow{st_{X,e:V \to X}} > \sum (X \bullet X) & \xrightarrow{\sum (sub)} > \sum X \\ h \bullet id & & \downarrow h \\ X \bullet X & \xrightarrow{sub} > X \end{array}$$

- Morphisms: maps of $Set^{\mathbb{F}}$ which are both Σ -algebra and monoid homomorphisms.
- Initial Object: $(TV, \eta_V : V \to TV, \tau : \Sigma TV \to TV, \sigma : TV \bullet TV \to TV)$

Definition (Category of \Sigma-subst-algebras)

- Monoidal closed category $C = (C, \otimes, I)$
- Strong endofunctor Σ with a strength^a st
- Objects: X = (X, e, h, sub), where (X, e, sub) is a monoid in $\mathcal C$ and (X, h) is a Σ -algebra such that the following diagram commutes.

• Morphisms: maps of $\mathcal C$ which are both Σ -algebra and monoid homomorphisms.

^aA strength for Σ is a natural transformation of type $\Sigma(X)\otimes Y\to \Sigma(X\otimes Y)$ satisfying some coherence conditions.

Theorem

If Σ has a free monad T then $(TI, \eta_I, \sigma, \tau)$ is an initial Σ -subst-algebra, where $\tau : \Sigma TI \to TI$ is the free Σ -algebra of I and σ is given as follows:

$$\sigma: \ TI \bullet TI \xrightarrow{\ \ \bar{st}_{I,TI} \ \ } T(I \bullet TI) \xrightarrow{\ \ T\lambda_{TI} \ \ \ } TTI \xrightarrow{\ \ \mu_{I} \ \ } TI \ ,$$

where $\bar{s}t: TX \bullet Y \to T(X \bullet Y)$ is the lifting of the strength st of Σ to its free monad T.

Definition (Category of \Sigma-ptd-subst-algebras)

- Monoidal closed category $C = (C, \otimes, I)$
- u-strong endofunctor Σ with a u-strength a st for the forgetful functor u from $I \downarrow \mathcal{C}$
- Objects: X = (X, e, h, sub), where (X, e, sub) is a monoid in $\mathcal C$ and (X, h) is a Σ -algebra such that the following diagram commutes.

$$\begin{array}{c|c} \Sigma X \bullet X & \xrightarrow{st_{X,e:I \to X}} & \Sigma (X \bullet X) & \xrightarrow{\Sigma (sub)} & \Sigma X \\ h \bullet id & & \downarrow h \\ X \bullet X & \xrightarrow{sub} & X \end{array}$$

• Morphisms: maps of $\mathcal C$ which are both Σ -algebra and monoid homomorphisms.

^aA u-strength for Σ is a natural transformation of type $\Sigma(X) \otimes uY \to \Sigma(X \otimes uY)$ satisfying some coherence conditions.

Theorem

 $(TI, \eta_I, \sigma, \mu_I)$ is an initial Σ -ptd-subst-algebra, where σ is given by the following composite:

$$TI \otimes TI = TI \otimes u(\eta_I : I \to TI) \xrightarrow{st_{I,\eta_I}} T(I \otimes u(\eta_I)) = T(I \otimes TI)$$

$$\xrightarrow{T\lambda_{TI}} TTI \xrightarrow{\mu_I} TI .$$

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

Motivation for equations

Group Axioms

Given a group algebra (X, e, i, m),

- (G1) $\forall x, y, z \in X$ m(m(x, y), z) = m(x, m(y, z))
- (G2) $\forall x \in X \quad m(e, x) = x$
- (G3) $\forall x \in X \quad m(i(x), x) = e$

β , η equations for λ -calculus

Given a λ -calculus algebra (X, e, lam, app, sub),

- (β -eqn) $\forall t \in \delta X(n), u \in X(n)$ $app(lam(x_{n+1}.t), u) = sub(t; (x_1, \dots, x_n, u))$
- $(\eta$ -eqn) $\forall t \in X(n)$ $lam(x_{n+1}.app(t, x_{n+1})) = t$

Kelly & Power equational theories

KP Theory	Groups	
$\overline{Sig\;S: \mathcal{C}_fp \to\mathcal{C}}$	$\operatorname{Sig} S : \mathbb{N} \to \mathit{Set}$	
J 1 191	$(0,1,2) \mapsto (1,1,1)$	
$\Sigma X = \coprod_{a \in \mathcal{C}_{fp} } \mathcal{C}(a, X) \otimes S(a)$	$\Sigma X = \coprod_{a \in \mathbb{N}} X^a \times S(a) = 1 + X + X^2$	
$TX = \mu A.X + \Sigma A$	$TX = \mu A.X + \Sigma A$	
$TX \cong$ all terms freely gener-	$TX \cong $ all group terms freely generated	
ated from X	from a variable set X	
(Equation)	(Equation)	
$D: \mathcal{C}_{fp} o \mathcal{C}$ together with	$D: \mathbb{N} \to Set: (1,3) \mapsto (2,1)$	
$\forall a \in \mathcal{C}_{fp} \ D(a) \xrightarrow{E_L(a) \atop E_R(a)} T(a)$	$D(1) = 2 \xrightarrow{E_L(1)} T(1)$	
	$E_L(1)(1) = m(e, x_1), E_R(1)(1) = x_1$	
	$E_L(1)(2) = m(i(x_1), x_1), E_R(1)(2) = e$	
	$D(3) = 1 \xrightarrow{E_L(3)} T(3)$	
	$E_L(3)(1) = m(m(x_1, x_2), x_3),$	
	$E_R(3)(1) = m(x_1, m(x_2, x_3))$	

Free Constructions

KP Theory

There exists a finitary monad T' such that

$$T'$$
-Alg $\cong \Sigma$ -alg $/_{E_L=E_R}$

$$F \left(\begin{array}{c} \dashv \\ \dashv \\ \end{pmatrix} u \right)$$
 C

where Σ -alg/ $E_L=E_R$ is a full subcategory of Σ -alg whose objects are Σ -algebras satisfying the equations.

Groups

There exists a finitary monad T' such that

$$T' ext{-Alg}\cong \Sigma ext{-alg}/_{E_L=E_R}$$
 $F\left(ext{ }
ightarrow
ight) u$
 Set

where Σ -alg/ $_{E_L=E_R}$ is a full subcategory of Σ -alg whose objects are group-algebras, *i.e.*(X,e,i,m) satisfying the group axioms G1,G2, and G3

Problems with applying K.P. theory to subst-algebras

Recall: subst-algebras for λ -calculus

Objects: $(X, e: V \to X, lam: \delta X \to X, app: X^2 \to X, sub: X \bullet X \to X)$ satisfying

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

A new view on equational theories: Observation

Example: Group

Given a group algebra $(X, 1 + X + X^2 \xrightarrow{[e,i,m]} X)$,

- (G1) $\forall x, y, z \in X$ m(m(x, y), z) = m(x, m(y, z))
- (G2) $\forall x \in X \quad m(e, x) = x$
- (G3) $\forall x \in X \quad m(i(x), x) = e$

A new view on equational theories

Observation

$$\begin{array}{cccc} \Sigma\text{-alg} & & D\text{-alg} \\ 1+X+X^2 & & & X^3+X+X \\ & \downarrow & & & E_L \bigvee_{V} E_R \\ & & & & X \end{array}$$

Definition (Equations for algebras)

- ullet a category ${\mathcal C}$ and an endofunctor Σ
- Equation: a domain endofunctor D with functors E_L and E_R from Σ -alg to D-alg preserving base-objects of algebras, $i.e.u'E_L = u$ and $u'E_R = u$.

Free constructions

Theorem

If either

• (Cond1) $\mathcal C$ is cocomplete and Σ , D preserve colimits of ω -chains.

 \bullet (Cond2) $\mathcal C$ is cocomplete and well-copowered, and Σ preserves epimorphisms.

then

Free constructions

Theorem

If either

- (Cond1) $\mathcal C$ has coequalizers, pushouts and colimits of chains whose cardinals are less than or equal to a regular cardinal λ , and Σ , D preserve colimits of chains whose cardinals are equal to λ .
- (Cond2) $\mathcal C$ has coequalizers, pushouts and colimits of chains (whose cardinals are less than a regular cardinal λ) and is (λ -)well-copowered, and Σ preserves epimorphisms.

then

- Abstract Syntax with Binding
 - First order syntax without binding
 - First order syntax with binding
 - Substitution Algebras

- Equational Theories
 - Classical approach
 - New view on equations
 - Examples of equations

Examples of Equations

subst-algebras for λ -calculus

Objects: $(X, e: V \to X, lam: \delta X \to X, app: X^2 \to X, sub: X \bullet X \to X)$ satisfying

$$(\delta X + X^{2}) \bullet X \xrightarrow{st_{X,e:V \to X}} \delta(X \bullet X) + (X \bullet X)^{2} \xrightarrow{\delta sub + sub^{2}} \delta X + X^{2}$$

$$[lam,app] \bullet id \bigvee_{V} \bigcup_{sub} [lam,app]$$

$$X \bullet X \xrightarrow{sub} X$$

Examples of Equations

Example: λ -calculus

(
$$\beta$$
-eqn)
$$\forall \, t \in \delta X(n), u \in X(n) \quad app(lam(x_{n+1}.t), u) = sub(t; (x_1, \dots, x_n, u))$$

$$\delta X \times X \xrightarrow{lam \times id} X \times X \xrightarrow{lapp} X \times X$$

$$(\eta\text{-eqn})$$

$$\forall t \in X(n) \quad lam(x_{n+1}.app(t,x_{n+1})) = t$$

$$X \xrightarrow{\langle id,! \rangle} X \times 1 \xrightarrow{up \times \lambda e} \delta X \times \delta X \simeq \delta (X \times X) \xrightarrow{\delta app} \delta X$$

$$\downarrow lan$$

$$\downarrow X$$

Examples of Equations

π -calculus

- Base category Set^{II}
- \bullet $\nu: \delta X \to X$, where $\delta X \cong (V \multimap X)$
- $\nu x.\nu y.t = \nu y.\nu x.t$
- $\bullet \ \forall \, t \in \delta^2 X(n) \quad \nu x_{n+1}.\nu x_{n+2}.t = \nu x_{n+1}.\nu x_{n+2}.t [x_{n+2}/x_{n+1},x_{n+1}/x_{n+2}]$

Future Work

- Modelling DILL (Dual Intuitionistic Linear Logic)
- Modelling Dependent type languages.
- Develop the equational theories in pre-ordered setting, and apply them to Term Rewriting Systems.
- Find more applications of the equational theories. Example: the free-algebra models for the π -calculus by Ian Stark.